Flux and Charge Controlled Cooper Pair Pumping

Jukka Pekola, Juha Vartiainen, Mikko Möttönen, Low Temperature Laboratory, Helsinki University of Technology
Antti Kemppinen, Mikes

1. Charge pumps
2. Pumped charge and Berry phase in Josephson junction circuits
3. Flux and charge controlled pump - sluice
4. Experiments

Together with: Jani Kivioja, Antti Niskanen, Antti Manninen, Heikki Seppä, Frank Hekking, Rosario Fazio, Valentina Brosco
Normal state charge pumps: Principle

Cyclic operation of gates, $q_i = C_{gi} V_{gi}/e$, transports charge unidirectionally, even in the absence of bias.

H. Pothier et al. 1992
Currents on the level of few pA
Accuracy about 1% with respect to $I = e f$
Charge pumps

Practical whys:
Towards current standard

Metrological "Quantum Triangle"

Normal single-electron pump: \(I = e f \)

High accuracy but slow: \(I < 10 \) pA
Why to use Josephson junctions instead?

1. Cooper pair pumps are much faster than normal electron pumps:

 $$I_{\text{MAX}} = I_C \times \text{duty cycle}$$

 Adiabatic behaviour up to

 $$j_{LZ} \sim \frac{E_J^2}{\hbar E_C}$$

2. Possibility to study geometric effects

3. Possibility to employ combined gate (charge) and flux control – in normal pumps typically only charge control possible

I_C controlled by magnetic flux
Basics of Josephson junctions

Josephson relations:

\[I_S = I_C \sin \varphi \]
\[\hbar \frac{d\varphi}{dt} = 2eV \]
\[\varphi = \phi_1 - \phi_2 \]

Important energy scales of a Josephson junction with critical current \(I_C \) and capacitance \(C \):
- Josephson coupling energy
 \[E_J = \frac{\hbar}{2e} I_C \]
- Charging energy
 \[E_C = \frac{(2e)^2}{2C} \]
- Thermal energy
 \[k_B T \]
"Classical" Josephson junctions

RCSJ-model

Ideal Josephson junction

\[I \]

\[V \]

\[C \]

\[R \]
Josepshon junctions in the charging limit ($E_C >> k_B T$)

$E = E_C (Q_0/e - n)^2$

- n even

$E = E_C (Q_0/e - n)^2 + \Delta$

- n odd

$Q_0 \equiv C_g V_g$

Normal state, $\Delta = 0$

Superconducting state, $\Delta > E_C$

M. Tuominen et al. (1992)
Charge and phase

\[[\varphi, Q] = i2e \]

Classical Josephson junctions:
\[E_J \gg E_C : \varphi \text{ fixed, } Q \text{ completely undetermined} \]

Coulomb blockaded Josephson junctions:
\[E_J \ll E_C : \varphi \text{ completely undetermined, } Q \text{ fixed} \]

Problem to generate large currents accurately
The first three-junction CPP

Potential sources of error in Cooper pair pumping

1. higher order processes due to finite E_J
2. non-adiabaticity
3. environmental impedance
4. background charge noise
5. quasiparticles
R-pumps

Suppression of higher order tunneling effects by dissipative environment

S. V. Lotkhov, a) S. A. Bogoslovsky, b) A. B. Zorin, and J. Niemeyer
Physikalisch-Technische Bundesanstalt, D-38116 Braunschweig, Germany
APL 2001
Transported charge by supercurrent and pumping

\[\langle \hat{I}_\ell \rangle = \langle m | \hat{I}_\ell | m \rangle + 2 \Re \text{e} \langle m | \hat{I}_\ell | \hat{m} \rangle \]

usual supercurrent

\[\langle m | \hat{I}_\ell | m \rangle \equiv I_{S,\ell} = \frac{\partial E_m}{\partial \varphi} \]

geometric contribution due to non-stationary control parameters

\[Q_{\text{cycle}} \equiv \oint \langle \hat{I}_\ell \rangle dt = \oint I_{S,\ell} dt + Q_P \]

\[Q_P = 2\hbar \sum m \oint \sum_{n \neq m} \frac{\langle m | \hat{I}_\ell | n \rangle}{E_m - E_n} \langle n | \nabla \tilde{q} m \rangle \cdot d\tilde{q} \]

Pumped charge and Berry phase

\[\theta_{\text{Berry}} = i \oint \langle m | dm \rangle \quad \leftrightarrow \quad Q_P = 2 \Re \int \langle m | \hat{Q}_e | dm \rangle \]

\[Q_P = -2e \frac{\partial \theta_{\text{Berry}}}{\partial \varphi} \]

A pumping experiment does not require strict phase bias, measurement of Berry phase however does.
Three-junction Cooper pair pump - revisit

Perfectly phase-biased adiabatic CPP

\[Q_P = 2\hbar 3m \left[\sum_{n \neq m} \int \frac{\langle \hat{I}_t \rangle_{mn}}{E_m - E_n} \langle n|\partial_{\tilde{q}m}\rangle \cdot d\tilde{q} \right] \]

\[Q_P / (2e) \approx 1 - 9E_J / E_C \cos \varphi \]

At \(\varphi = 0 \) this gives all the current; at general bias \(Q_P \) adds to the average of direct supercurrent \(I_S \propto E_J \)

Charge and Flux controlled pump - sluice

Tunable SSET: $E_{J1}(\Phi_1), E_{J2}(\Phi_2), q$ – two valves and one piston

Temporal suppression of E_J allows for fast operation with small errors

Charge and Flux controlled pump - sluice

Illustrative analysis in two-state approximation: $E_{J,\text{max}} \ll E_C$

$|g\rangle = e^{i\gamma}|a\rangle|0\rangle + |b\rangle|1\rangle$, $|e\rangle = e^{i\gamma}|b\rangle|0\rangle - |a\rangle|1\rangle$

γ determined by fluxes only:

$\gamma = \arctan\left(\frac{E_{J2} - E_{J1}}{E_{J1} + E_{J2}} \tan \frac{\phi}{2}\right)$

Amplitudes determined by charge and fluxes:

$|a|^2 = 1 - |b|^2 = \frac{1}{2} \left[1 - \frac{q - 1/2}{\sqrt{(q - 1/2)^2 + (E_{12}/E_C)^2}} \right]$

$E_{12} = \frac{1}{2} \sqrt{E_{J1}^2 + E_{J2}^2 + 2E_{J1}E_{J2}\cos \phi}$
Obtaining pumped charge and Berry phase in two-state approximation

Direct evaluation of charge as

\[Q_P = 2\Re \int \langle m | \hat{Q}_\ell | dm \rangle \]

involves contributions that arise from different sections in the cycle than those of Berry phase

\[\theta_{\text{Berry}} = - \oint |a|^2 d\gamma \]

\[\gamma = \arctan \left(\frac{E_{J2} - E_{J1}}{E_{J1} + E_{J2}} \tan \frac{\varphi}{2} \right) \]
Berry phase and Q_p in a sluice

In a two state approximation, Berry phase yields using:

$$Q_p = -2e \frac{\partial \theta_{\text{Berry}}}{\partial \varphi}$$

$$\frac{Q_p}{(2e)} = 1 - 2\frac{\sqrt{E_j^2 + E_C^2}}{E_j E_C} E_{J,\text{res}} \cos \varphi$$

Both Berry phase and direct integration of charge yield:

$$\frac{Q_p}{(2e)} \approx 1 - 2\frac{E_{J,\text{res}}}{E_j} \cos \varphi$$

in the small E_j/E_C limit.
Finite frequency errors of the device

Note: Several pairs per cycle can be pumped

To study the non-adiabaticity errors, these results were obtained by solving Schrödinger equation and integrating in time, not by adiabatic approximation.
First experiments

Set-up:

Device:

SQUID loops

Input coils

Junctions

Gate line

\(f = 0 - 20 \text{ MHz} \)
Experimental gate and flux modulation

\[\hat{H} = \frac{2e^2}{2C_J + C_g} (\hat{n} - n_g)^2 - E_J \left(\pi \frac{\Phi_r}{\Phi_0} \right) \cos(\phi + \varphi/2) \]
\[- E_J \left(\pi \frac{\Phi_l}{\Phi_0} \right) \cos(\varphi/2 - \phi). \]
General I/V curves, pumping

3 MHz, 4...34 pairs / cycle pumped
Quantitative comparison to $I = N2ef$

Improvements?

1. Better temporal suppression of E_J using a SQUID array or a three-junction SQUID?

2. Higher speed via
 (a) increasing E_J (by lowering junction resistance or ultimately by using Nb junctions)
 (b) pulse optimisation to avoid non-adiabaticity
Second generation samples
Characteristics of the improved samples
Nanoampere pumping

Optimum operation point at finite bias voltage: no phase-bias, incoherent tunneling(?)

Maximum current pumped is about 5% of I_C: Theoretical limit is about 15% based on the pulsing cycle employed.

Counting of charges in a cycle possible from the step structure of the current vs gate amplitude.
Measurement scheme of Berry-phase in a sluice

The sluice-pump acts as a current source, which induces an additional $\pm Q_P f$ on the "big" Josephson junction threshold detector.

$$I \pm Q_P f = I_{BIAS}$$

$$\theta_{Berry} = \frac{1}{2e} \int^{\varphi} Q_P (\varphi') d\varphi'$$

In a separate threshold experiment with a comparable Josephson junction we have demonstrated sub-1 nA resolution of switching asymmetry (cond-mat/0612087), which should be sufficient for the BP measurement.
Controlled transport in small Josephson junction networks provides an interesting system to study quantum pumping effects and geometric phases. A measurement of Berry phase in a Josephson junction array seems feasible.

Flux and charge controlled Cooper pair pump can present a fast and accurate choice as a current source in metrological applications. Only three control parameters are necessary. Recent experiments have demonstrated the operation principle and high current yield.