Condensation in temporally correlated zero-range dynamics

Gunter M. Schütz

Institut für Festkörperforschung, Forschungszentrum Jülich, 52425 Jülich, Germany
and
Interdisziplinäres Zentrum für Komplexe Systeme, Universität Bonn

joint work with Ori Hirschberg, David Mukamel, Weizmann Institute of Science

• Classical condensation phenomena
• Condensation transition in the zero-range process
• Non-Markovian ZRP dynamics
• Conclusions
1. Some classical condensation phenomena

Granular shaking:

N=100 plastic particles in box with two compartments separated by wall with slit

[Schlichting and Nordmeier ‘96, Eggers ‘99, Lohse ‘02]

\[T > T_c \] \hspace{1cm} \text{Gaseous state} \hspace{1cm} \text{T > T}_c

\[T < T_c \] \hspace{1cm} \text{Condensed state} \hspace{1cm} \text{T < T}_c

i) Strong shaking (fixed amplitude, 50 Hz frequency): \(\rightarrow \) Equal gaseous distribution

ii) Moderate shaking (same amplitude, 30 Hz): \(\rightarrow \) Condensation (with SSB)

Effective, frequency-dependent temperature leads to phase transition
Granular Clustering: $L=5$

http://stilton.tnw.utwente.nl/people/rene/clustering.html

Detlef Lohse, Devaraj van der Meer, Michel Versluis,
Ko van der Weele, René Mikkelsen

Time $t = 0 \ldots 12$ sec

t approx. 1 min
Single File Diffusion:

SFD: Quasi one-dimensional diffusion without passing

- diffusion in zeolites
- colloidal particles in narrow channels
- ion channels
- molecular motors and ribosomes
- gel electrophoresis
- one-dimensional interface growth
- automobile traffic flow
- ...

Condensation = traffic jam = phase separation

[Three phases of kinesin transport (Chodhury et al.)](http://omega.dawsoncollege.qc.ca/ray/protein/protein.htm)
2. Condensation transition in the zero-range process

Zero-range process (ZRP) with symmetric nearest-neighbour hopping [Spitzer (1970)]

- Stochastic microscopic particle hopping model for large scale hydrodynamic behaviour
- Cluster of size \(n\) \(\Leftrightarrow\) occupation number in ZRP
- Particle flux \(J(n_k)\) between compartments \(\Leftrightarrow\) hopping rate in ZRP
Mapping of single-file diffusion to zero range process:

- Label particles consecutively

- Map particle label to lattice site

- Map discretized interparticle distance to particle number
Condensation transition ➔ Proposed to explain condensation phenomena

• Granular shaking
• Network rewiring
• Accumulation of wealth

Mapping to single-file dynamics (one-dimensional):
• Phase separation in multi-component systems
• Traffic flow

Generic model for condensation in complex systems
Exact grand canonical stationary distribution of zero-range process [Spitzer, (1970)]

Product measure with marginals $P(n)$ and local partition function Z

$$P(\mathbf{n}) = \prod_{i \in \Lambda} P(n_i)$$

$$P(n) = \frac{1}{Z} z^n \prod_{k=1}^{n} J^{-1}(k), \quad Z = \sum_{n=0}^{\infty} \tilde{P}(n)$$

- Fugacity z determines (fluctuating) density
- Well-defined for fugacities within radius of convergence z^* (that depends on flux function)
- Canonical ensembles for any N by projection on fixed N
Spatially homogeneous systems

1) Asymptotically vanishing flux $J(n) \to 0$: $\Rightarrow z^* = 0$ and hence $\rho_c = 0$ (strong condensation)

2) Consider generic case where for large n

$$J(n) = A \left(1 + \frac{b}{n^\sigma}\right)$$

\Rightarrow radius of convergence of partition function: $z < z^* = A$

\Rightarrow at z^* one has finite density ρ_c for $\sigma < 1$

\Rightarrow For $\sigma = 1$: $\Rightarrow P(n) \sim 1/n^b$

$$\rho(z^*) = \begin{cases} \infty & \text{for } b \leq 2 \\ \rho_c = \frac{1}{(b - 2)} & \text{for } b > 2 \end{cases}$$
Interpretation of critical density for $b>2$ or $\sigma < 1$ for canonical ensemble:

- Above critical density all sites except one (background) are at critical density
- One randomly selected site carries remaining $O(L)$ particles

- **Classical analogue of Bose-Einstein condensation**
 [Evans '96, Ferrari, Krug '96, O'Loan, Evans, Cates, '98, Jeon, March '00]

- **Single random condensation site**
 [Grosskinsky, GMS, Spohn, '05, Ferrari, Landim, Sisko '07, Loulakis, Armendariz '08, Evans, Majumdar '08]

- **Continuous condensation transition** ($\rho_{bg} = \rho_c$)

- **Coarsening as precursor of condensation**
 [Grosskinsky, GMS, Spohn, '05; Godreche '05]
Remarks:

- Product measure stationary for ZRP on arbitrary graph

- Single-file dynamics ($n = \text{interparticle distance}$) ⇒ 1d phase transition?

 Thermally activated jumps: $J(n) \sim \exp(-\beta E(n)) \sim \exp\left(b/n^\sigma\right)$

 $E(n) = a + b/n^\sigma + ...$ ⇒ Long range interaction in 1d!

- Basic mechanism of condensation:

 Growth of large domains on the expense of small domains

 ⇒ Asymptotically decaying $J(n)$ with critical decay exponent $\sigma = 1$

 ⇒ In this case, condensation depends on interaction strength b
3. Non-Markovian ZRP dynamics

Complex systems: Markovian property (lack of memory) may be unjustified
(e.g. colloidal particles in a fluid: power law tail in velocity autocorrelation)

- Introduce memory term (on microscopic level)

- Is condensation stable w.r.t. memory?
- Can memory induce condensation?

Example: AHR model for probe particle in a driven fluid:
- strongly correlated non-Markovian jumps with effective jump rate
- domain size distribution (distance between probes) identical to ZRP
- no condensation, but “almost” (huge mean domain size)
Our approach to model non-Markovian dynamics:

- make jump rates dependent on “age” of site i (integer clock τ_i) $\Rightarrow u(n,\tau)$
- age measured since last arrival (reset $\tau(k) = 0$ at arrival of particle)
- discrete increments $\tau_i \rightarrow \tau_i + 1$ at exponential random times
- clock increment independent of n_i, but in general depending on other clocks

\Rightarrow Joint dynamics $(n(k),\tau(k))$ is Markovian

\Rightarrow Particle hopping $n(k)$ by itself is non-Markovian and zero range
1) Special case: On-off model with interaction of clocks

- Consider on-off case $\tau = 0,1$
- Asymmetric nearest neighbour jumps

$$u(n, \tau) = \begin{cases}
0 & \tau = 0 \quad \text{("off" state)} \\
u(n) & \tau \geq 1 \quad \text{("on" state)}
\end{cases}$$

- Clock increment depending on target site

Exact results:
- Stationary distribution factorizes into-site marginals $P(n) = P_0(n) + P_1(n)$
- $P(n)$ same form as Markovian ZRP with effective hopping rate

$$u_{\text{eff}}(n) = c \frac{u(n)}{c + u(n)}$$

\Rightarrow Shift in critical b for condensation
2) Generic model without clock interaction

- make jump rates dependent on “age” of site i (integer clock τ_i)
 $\Rightarrow u(n, \tau)$

- age measured since last arrival (reset $\tau(k) = 0$ at arrival of particle)

- discrete increments $\tau_i \rightarrow \tau_i + 1$ at exponential random times (independent of n_i and other clocks)

\[
(n_i, \tau_i) \xrightarrow{u(n_i, \tau_i)} (n_i - 1, \tau_i), (n_i + 1, \tau_j = 0)
\]

\[
(n_i, \tau_i) \xrightarrow{c} (n_i, \tau_i + 1),
\]

Consider two cases:

A) Mean field dynamics: Uniform random target site j (fully connected graph)

B) Totally asymmetric nearest neighbour dynamics (1-d periodic lattice)
A) Mean field dynamics:

- Uniform random target site j: Mean Field (MF) dynamics
- approximate factorization for large L
- focus on single site with incoming “mean-field” current J

\[
\frac{dP(n, \tau)}{dt} = -P(n, \tau)\left[J + c + u(n, \tau)\right] + J\delta_{\tau,0}P(n-1) + cP(n, \tau-1) + u(n+1, \tau)P(n+1, \tau)
\]

with average occupation number $P(n) \equiv \sum_\tau P(n, \tau)$

and current $\bar{J} = \sum_{n, \tau} u(n, \tau)P(n, \tau)$
Stationary distribution:

- set time-derivative to zero
- define mean hopping rate

\[\bar{u}(n) \equiv \frac{\sum_\tau P(n, \tau) u(n, \tau)}{\sum_\tau P(n, \tau)} \]

\[P(n) = P(0) J^n \bar{f}(n) \quad \text{with} \quad \bar{f}(n) = \prod_{i=1}^{n} \bar{u}(i)^{-1} \]

\[\text{Same form as usual Markovian ZRP with hopping rate } \bar{u}(n) \]

and current \(J=z \)
Shift of condensation transition:

- Critical current

\[J_c = \frac{c}{2} \left(\sqrt{1 + \frac{4}{c}} - 1 \right) \]

===> \(b \) has to be larger than 2, condensation transition for

\[b > \frac{4}{c} \left(\sqrt{1 + \frac{4}{c}} - 1 \right)^{-1} \]

Memory destroys condensation for \(b \) close to 2
On-off model:

- Consider on-off case $\tau = 0,1$

$$u(n, \tau) = \begin{cases}
0 & \tau = 0 \text{ ("off" state)} \\
u(n) & \tau \geq 1 \text{ ("on" state)}
\end{cases}$$

- Mean hopping rate

$$\frac{1}{\bar{u}(n)} = \frac{P_{\text{off}}}{J} + \frac{1}{u(n)}$$

$$\bar{u}(n) \sim \frac{c + J}{c + J + 1} \left(1 + \frac{b_{\text{eff}}}{n}\right)$$

Same form as usual Markovian ZRP with interaction parameter b_{eff}
B) Totally asymmetric on-off model with periodic boundary conditions:

- mean field approximation not good
- condensate typically occupies two sites
- condensate moves
Motion of condensate:

- position of most occupied site
- occupation of most occupied site

\[\text{speed } v = \frac{1}{N-N_c} \sim \frac{1}{L} \]
Conclusions

1. Construction of family ZRP with memory

2. Exactly solvable case with coupled clocks: product measure, modified ZRP hopping rates that affect condensation

3. General mean field dynamics with uncoupled clocks: modified ZRP hopping rates that affect condensation (large L)

4. Totally asymmetric On-off model with nearest neighbour hopping in one dimension:
 - condensate occupies two sites
 - slinky motion with finite velocity $\sim 1/L$

\Rightarrow Similar conclusions for heterogeneous Single-File Diffusion with long range interaction
Acknowledgments

Thanks to:

• Weizmann Institute of Science